datasheet

xsy-ai机械人文明

文章数:126 被阅读:73139

最新精华更多

  • 1 浅析浮点数
  • 2 漫谈电路、信号处置惩罚中的“虚部”
  • 3 人生苦短,我用Micropython...
  • 4 双手撸码20+天,串口软件(visu...
  • 5 徒手编写了一个STM8的反汇编工具
  • 6 2017年大学生电子竞赛F题 方案级...
  • 7 格物致知01——拍频
  • 8 C语言char字符串与中文编码的坑
  • 9 漫话有源滤波器——低通滤波器篇
  • 10 漫话有源滤波器——高通滤波器篇

账号入驻

凛冬已至,早春未远!AI芯片投资深解读

2018-12-04
    阅读数:

关注我们,思考像钟摆,永不停歇


阅读要害词:AI芯片、投资?


中兴事件后,国人对“中国芯”报以极大期望。但现实的芯片工业,依然面临着成本高、利润低、工业链和周期长、流程庞大等问题。愿望与现实间难以逾越的鸿沟该由谁来填补?投资者们将目光投向人工智能。

?

AI芯片投资有哪些难点?该如何掌握投资时机?

?

下面,专注于美国早期前沿科技项目投资的联想之星Comet?Labs将带来以上问题的详细解读。

?

人工智能从2014年风生水起生长起来,发动的不只是数学家、神经学家与教授们的职位与再起,同时也推动了新的一波投资浪潮。经过几年的生长, 随着落地应用需求的明确,各人发现硬件是其中不行或缺的一环。与之前的物联网生长类似,除了比运算力的智能云服务外,硬件一方面饰演着重复获取数据的角色 (如摄像头,传感器等),另一方面也是落地与展现实力的方式(像自动驾驶汽车、机械人、智能音箱等)。所有这些硬件中的智能需求推动了芯片的演化。人工智能芯片的破土,是刚需使然,这毫无疑问。

?

所有人都急着问:人工智能芯片开始赚钱了吗?什么时候赚?谁在赚?从现在(2018年底)的情况来看,这个问题的答案可能还不够让人兴奋。这波芯片亿博娱乐平台赚得最多的其实是内存厂,三星跟海力士一举占据年度收入的前五名,谢谢各式庞大的算法与数据存储需求,曾经卖几多赔几多的年代完全已往了, 存储的价钱现在上了天。反而各人熟悉的NVIDIA只在第10名而已。另一個赚钱的是传统的芯片厂。除了疯狂的挖矿应用外,企业服务器的采购量到达每年上千万台,英特尔的传统X86芯片完全靠这撑起了一片天,弥补了低迷的PC市场。而在一般拥有公共高期待的创新应用领域,如智能车、机械人等,其芯片需求量目前其实还撑不起一次的流片。

?

那么,现在就不是投资人工智能芯片的时机了?虽然是,现在反而是最佳的投资时机!5年内,这将是拥有近500亿美元价值的市场!作为勇敢又有智慧的风投,虽然要在一切混沌不明时就抢进,从中摸索出架构,做完整的结构。晚了就只能是锦上添个花而已了。联想之星Comet Labs综合汇聚了人工智能与芯片外洋投资的经验,为各人分析点浑沌,聊聊芯片投资有几多困难和时机。



芯片投资的五大困难


?

?难点一:芯片投资没有尺度可以追随?

?

已往芯片的投资很大部门启始于尺度的制定,如3G/4G、H.264、IEEE 802系列等。一旦上层应用的尺度制定完成后,除了IP的争夺之外,就在芯片的巨细、散热、功效等方面下功夫,期待以pin2pin来取代昂贵的原厂芯片。?已往的投资者就是在尺度制定完成后、比谁行动快来投资。而对于AI芯片,问题在于,Tensorflow、Caffe2等上层人工智能演算平台每个月都在演进,虽然基本的架构如CNN已相当成熟,但在应用层面,差异的数据会影响底层芯片的效能,如影像处置惩罚、高频数据、语音等,都有所差异。如何下手、如何评估?是否等到尺度制定再脱手?已往的投资逻辑在这里就会遇到问题。我们看到的是,找寻一个了解人工智能软件生长或演算的芯片团队才是重点。


?

难点二:如何构建有弹性的芯片


承接第一点,如何让号称如神经大脑般的弹性演算跑在硬浜浜的硅片上呢?大量的libraries、compliers饰演着转换的角色,协助简朴的指令集来进行硅芯片的运算。Google的TPU就在这做了个取舍,将指令集降低到4条,并让其TPU专注在训练上。讲简朴些,就像把一篇白话文转成四行诗,再把诗刻在竹简上,排列出差异的诗集,代表差异的白话文。AI芯片厂商中,谁的Libraries、compliers或编译软件做得好,谁就能追随神经运算一同演化。开发芯片对软件人才的需求之庞大,应该接近CPU品级了。在智能手机上也是如此,为什么Google的原生机跑起来效能总是最好,而不是只在拼骁龙的品级或内存巨细。如何拥有有弹性的芯片?在这个问题中,如何建构一个有弹性的开发生态是评估要点。?



难点三:如何评估综合人才、团队

?

在评估人工智能芯片团队时,不能只看设计前端与生产后端人力,软件与架构团队的完整反而是决定产物的价值之处。岂论如何,缺一不行。传统互联网中小我私家英雄式的领导、商业模式的竞争等,在芯片可能就不是首要评估要素。一个学校出来的教授是没有措施完成AI芯片量产的创业故事的。虽然,现在流行的开源也进入了芯片领域,RISC-V是一个重要的要害词,有兴趣的话可以多往这挖。?

?

难点四:如何掌握边缘架构的兴起

?

不管是边缘盘算Edge computing,或是边缘伺服Edge server,边缘盘算得拥有AI的能力已经是现在谈论AI架构时不须争论之处。芯片的开发也会走向两端。NVIDIA的芯片是不能在传感器端使用的。纵然是土豪式的解决方案,成本上也会吃不用,更别说百瓦的耗电品级。


难点五:芯片生态系统的构建

?

人工智能芯片的投资至少要摸清楚上述几点的问题,同时再往下继续深究流片成本、下游模块/系统厂商的开发配合 (一般说的Design win/in)等问题。相当庞大是吗? 但这些都是建构在逻辑、数字、架构、技术等评估上的,与单纯的人的评估与商业模式的摸索相比也不算太难。究竟这是科学。

?



芯片投资的时机


?

作者不是芯片工程师身世,所以技术点到为止。下面回归投资面来看AI芯片的时机。

?

行业时机:资金两年内偏紧,抄底时机泛起

?

从资金供应面来看,这五六年其实是相当贫乏的。除了在2014年NVIDIA股票大涨的激励下冲出24亿美元的投资以外,2016、2017、2018都稳定在10亿多些美元。依照这些芯片新创企业拼命流片与提升制程的烧钱状况(一次7nm的流片会耗掉1,000万美元),加上没几家真正在大量出货(只要比特币等别再涨回万点),2019或2020初会泛起资金紧张的状况,捡自制挑好货就在那时!从退出选择来说,并购远大于上市,种种并购的世纪大案还挺多的,如ARM、Broadcom、Altera。对于既有芯片厂商所面临的问题——开发新客户与新产物的困难水平之高,直接并购照旧比力快。同时,目前许多手上有赚钱产物却没有明星方案的大型芯片厂商,每个都是现金满满的,在等着并购与投资的时机。

?


VC时机:打破传统芯片估值要领,寻找强IP、强团队、强弹性的AI芯片投资时机

?

AI芯片会不会泛起独角兽已经不用怀疑,但这独角兽的价值评估可能无法用传统的方式来看待。一般芯片机构融资的历程开始于简朴的shuttle,做了些样品来跟潜在的主顾讨论最终产物的规格与价钱,募集A轮资金。等到客户design win,产物确定进入最终产物,如手机、Wifi路由、伺服等,开始可以估算销售量、小算盘打打,收入或利润乘上一个市场的PS/PE,马上获得公司的估值。接下来就是看销售的功力。但现在的AI芯片投资全乱了套,一个看法或简朴的模拟(还纷歧定是在FPGA上),加上个明星创业者,就马上可以获得A轮融资。产物都还没验证完或没有样品前,B轮估值可能已经几个亿美金。不用等到Design win或出货到市场上,资金会不停的涌入,独角兽拭目以待。

?

我们认为优秀的AI芯片项目切合以下几点特征:


1)强IP:AI芯片的估值最终可能走向以IP为基础


2)强团队:团队有较强的软硬整合的功力


3)强弹性:特别在之前所说明的混沌状况下,整合并保有弹性的设计是相当困难且要害的

?

从投资角度,一些产物偏向值得期待:


1)Edge端的垂直应用是可以期待的偏向。虽然这很有可能是一代拳王的昙花一现,但如影像、语音、ADAS、机械视觉等需要大量收罗数据的垂直应用都有很大时机泛起大量出货进而上市的时机,不外也许不会是独角兽品级。


2)在头端应用方面,CPU/GPU品级的竞赛应该很快便可定山河。领先者是否能量产进入客户的伺服器,抑或是庆幸烧完千万美金后出售,在2019年年底前就可见分晓。


3)相关的应用在影象体(如In-memory盘算)、3D结构设计、开源的RISC-V生态,一些产物如光学应用、电源治理及RF端,也可能因为大量数据传输发生不小的时机。


4)5G市场可能不是一个适合一般创新的战场,究竟专利与工业链实在太难撼动,其中需要投入的成本与开发周期不是一般VC愿意蒙受的。


(本文作者:联想之星 Comet Labs? 美国业务合资人Lucas Wang;注:本文仅代表作者看法,不代表“机械人文明”立场。)


本文由“联想之星”供稿

转载请注明出处



长按二维码加公号,后台留言微信号,入群“AI大爆炸”


往 期 精 选?

?

我是广告:接待给“机械人文明”投稿~

好文请投:tougao@gsi24.com

— 完 —


机械人文明 服 务 内 容


广告投放 | 政府招商 | 工业陈诉

投融资 | 专家咨询 | 人才服务 | 论坛筹谋

↙相助需求,请点击“阅读原文”联系我们

About Us 关于我们 客户服务 联系方式 器件索引 网站舆图 最新更新 手机版

站点相关: TI培训

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

亿博娱乐平台版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright ? 2005-2018 EEWORLD.com.cn, Inc. All rights reserved